Matplotlib Styling Guide
Comprehensive guide for styling and customizing matplotlib visualizations.
Colormaps
Colormap Categories
1. Perceptually Uniform Sequential
Best for ordered data that progresses from low to high values.
- viridis (default, colorblind-friendly)
- plasma
- inferno
- magma
- cividis (optimized for colorblind viewers)
Usage:
im = ax.imshow(data, cmap='viridis')
scatter = ax.scatter(x, y, c=values, cmap='plasma')
2. Sequential
Traditional colormaps for ordered data.
- Blues, Greens, Reds, Oranges, Purples
- YlOrBr, YlOrRd, OrRd, PuRd
- BuPu, GnBu, PuBu, YlGnBu
3. Diverging
Best for data with a meaningful center point (e.g., zero, mean).
- coolwarm (blue to red)
- RdBu (red-blue)
- RdYlBu (red-yellow-blue)
- RdYlGn (red-yellow-green)
- PiYG, PRGn, BrBG, PuOr, RdGy
Usage:
# Center colormap at zero
im = ax.imshow(data, cmap='coolwarm', vmin=-1, vmax=1)
4. Qualitative
Best for categorical/nominal data without inherent ordering.
- tab10 (10 distinct colors)
- tab20 (20 distinct colors)
- Set1, Set2, Set3
- Pastel1, Pastel2
- Dark2, Accent, Paired
Usage:
colors = plt.cm.tab10(np.linspace(0, 1, n_categories))
for i, category in enumerate(categories):
ax.plot(x, y[i], color=colors[i], label=category)
5. Cyclic
Best for cyclic data (e.g., phase, angle).
- twilight
- twilight_shifted
- hsv
Colormap Best Practices
- Avoid
jetcolormap - Not perceptually uniform, misleading - Use perceptually uniform colormaps -
viridis,plasma,cividis - Consider colorblind users - Use
viridis,cividis, or test with colorblind simulators - Match colormap to data type:
- Sequential: increasing/decreasing data
- Diverging: data with meaningful center
- Qualitative: categories
- Reverse colormaps - Add
_rsuffix:viridis_r,coolwarm_r
Creating Custom Colormaps
from matplotlib.colors import LinearSegmentedColormap
# From color list
colors = ['blue', 'white', 'red']
n_bins = 100
cmap = LinearSegmentedColormap.from_list('custom', colors, N=n_bins)
# From RGB values
colors = [(0, 0, 1), (1, 1, 1), (1, 0, 0)] # RGB tuples
cmap = LinearSegmentedColormap.from_list('custom', colors)
# Use the custom colormap
ax.imshow(data, cmap=cmap)
Discrete Colormaps
import matplotlib.colors as mcolors
# Create discrete colormap from continuous
cmap = plt.cm.viridis
bounds = np.linspace(0, 10, 11)
norm = mcolors.BoundaryNorm(bounds, cmap.N)
im = ax.imshow(data, cmap=cmap, norm=norm)
Style Sheets
Using Built-in Styles
# List available styles
print(plt.style.available)
# Apply a style
plt.style.use('seaborn-v0_8-darkgrid')
# Apply multiple styles (later styles override earlier ones)
plt.style.use(['seaborn-v0_8-whitegrid', 'seaborn-v0_8-poster'])
# Temporarily use a style
with plt.style.context('ggplot'):
fig, ax = plt.subplots()
ax.plot(x, y)
Popular Built-in Styles
default- Matplotlib's default styleclassic- Classic matplotlib look (pre-2.0)seaborn-v0_8-*- Seaborn-inspired stylesseaborn-v0_8-darkgrid,seaborn-v0_8-whitegridseaborn-v0_8-dark,seaborn-v0_8-whiteseaborn-v0_8-ticks,seaborn-v0_8-poster,seaborn-v0_8-talkggplot- ggplot2-inspired stylebmh- Bayesian Methods for Hackers stylefivethirtyeight- FiveThirtyEight stylegrayscale- Grayscale style
Creating Custom Style Sheets
Create a file named custom_style.mplstyle:
# custom_style.mplstyle
# Figure
figure.figsize: 10, 6
figure.dpi: 100
figure.facecolor: white
# Font
font.family: sans-serif
font.sans-serif: Arial, Helvetica
font.size: 12
# Axes
axes.labelsize: 14
axes.titlesize: 16
axes.facecolor: white
axes.edgecolor: black
axes.linewidth: 1.5
axes.grid: True
axes.axisbelow: True
# Grid
grid.color: gray
grid.linestyle: --
grid.linewidth: 0.5
grid.alpha: 0.3
# Lines
lines.linewidth: 2
lines.markersize: 8
# Ticks
xtick.labelsize: 10
ytick.labelsize: 10
xtick.direction: in
ytick.direction: in
xtick.major.size: 6
ytick.major.size: 6
xtick.minor.size: 3
ytick.minor.size: 3
# Legend
legend.fontsize: 12
legend.frameon: True
legend.framealpha: 0.8
legend.fancybox: True
# Savefig
savefig.dpi: 300
savefig.bbox: tight
savefig.facecolor: white
Load and use:
plt.style.use('path/to/custom_style.mplstyle')
rcParams Configuration
Global Configuration
import matplotlib.pyplot as plt
# Configure globally
plt.rcParams['figure.figsize'] = (10, 6)
plt.rcParams['font.size'] = 12
plt.rcParams['axes.labelsize'] = 14
# Or update multiple at once
plt.rcParams.update({
'figure.figsize': (10, 6),
'font.size': 12,
'axes.labelsize': 14,
'axes.titlesize': 16,
'lines.linewidth': 2
})
Temporary Configuration
# Context manager for temporary changes
with plt.rc_context({'font.size': 14, 'lines.linewidth': 2.5}):
fig, ax = plt.subplots()
ax.plot(x, y)
Common rcParams
Figure settings:
plt.rcParams['figure.figsize'] = (10, 6)
plt.rcParams['figure.dpi'] = 100
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['figure.edgecolor'] = 'white'
plt.rcParams['figure.autolayout'] = False
plt.rcParams['figure.constrained_layout.use'] = True
Font settings:
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial', 'Helvetica', 'DejaVu Sans']
plt.rcParams['font.size'] = 12
plt.rcParams['font.weight'] = 'normal'
Axes settings:
plt.rcParams['axes.facecolor'] = 'white'
plt.rcParams['axes.edgecolor'] = 'black'
plt.rcParams['axes.linewidth'] = 1.5
plt.rcParams['axes.grid'] = True
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['axes.titlesize'] = 16
plt.rcParams['axes.labelweight'] = 'normal'
plt.rcParams['axes.spines.top'] = True
plt.rcParams['axes.spines.right'] = True
Line settings:
plt.rcParams['lines.linewidth'] = 2
plt.rcParams['lines.linestyle'] = '-'
plt.rcParams['lines.marker'] = 'None'
plt.rcParams['lines.markersize'] = 6
Save settings:
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['savefig.format'] = 'png'
plt.rcParams['savefig.bbox'] = 'tight'
plt.rcParams['savefig.pad_inches'] = 0.1
plt.rcParams['savefig.transparent'] = False
Color Palettes
Named Color Sets
# Tableau colors
tableau_colors = plt.cm.tab10.colors
# CSS4 colors (subset)
css_colors = ['steelblue', 'coral', 'teal', 'goldenrod', 'crimson']
# Manual definition
custom_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd']
Color Cycles
# Set default color cycle
from cycler import cycler
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
plt.rcParams['axes.prop_cycle'] = cycler(color=colors)
# Or combine color and line style
plt.rcParams['axes.prop_cycle'] = cycler(color=colors) + cycler(linestyle=['-', '--', ':', '-.'])
Palette Generation
# Evenly spaced colors from colormap
n_colors = 5
colors = plt.cm.viridis(np.linspace(0, 1, n_colors))
# Use in plot
for i, (x, y) in enumerate(data):
ax.plot(x, y, color=colors[i])
Typography
Font Configuration
# Set font family
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman', 'DejaVu Serif']
# Or sans-serif
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial', 'Helvetica']
# Or monospace
plt.rcParams['font.family'] = 'monospace'
plt.rcParams['font.monospace'] = ['Courier New', 'DejaVu Sans Mono']
Font Properties in Text
from matplotlib import font_manager
# Specify font properties
ax.text(x, y, 'Text',
fontsize=14,
fontweight='bold', # 'normal', 'bold', 'heavy', 'light'
fontstyle='italic', # 'normal', 'italic', 'oblique'
fontfamily='serif')
# Use specific font file
prop = font_manager.FontProperties(fname='path/to/font.ttf')
ax.text(x, y, 'Text', fontproperties=prop)
Mathematical Text
# LaTeX-style math
ax.set_title(r'$\alpha > \beta$')
ax.set_xlabel(r'$\mu \pm \sigma$')
ax.text(x, y, r'$\int_0^\infty e^{-x} dx = 1$')
# Subscripts and superscripts
ax.set_ylabel(r'$y = x^2 + 2x + 1$')
ax.text(x, y, r'$x_1, x_2, \ldots, x_n$')
# Greek letters
ax.text(x, y, r'$\alpha, \beta, \gamma, \delta, \epsilon$')
Using Full LaTeX
# Enable full LaTeX rendering (requires LaTeX installation)
plt.rcParams['text.usetex'] = True
plt.rcParams['text.latex.preamble'] = r'\usepackage{amsmath}'
ax.set_title(r'\textbf{Bold Title}')
ax.set_xlabel(r'Time $t$ (s)')
Spines and Grids
Spine Customization
# Hide specific spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Move spine position
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('data', 0))
# Change spine color and width
ax.spines['left'].set_color('red')
ax.spines['bottom'].set_linewidth(2)
Grid Customization
# Basic grid
ax.grid(True)
# Customized grid
ax.grid(True, which='major', linestyle='--', linewidth=0.8, alpha=0.3)
ax.grid(True, which='minor', linestyle=':', linewidth=0.5, alpha=0.2)
# Grid for specific axis
ax.grid(True, axis='x') # Only vertical lines
ax.grid(True, axis='y') # Only horizontal lines
# Grid behind or in front of data
ax.set_axisbelow(True) # Grid behind data
Legend Customization
Legend Positioning
# Location strings
ax.legend(loc='best') # Automatic best position
ax.legend(loc='upper right')
ax.legend(loc='upper left')
ax.legend(loc='lower right')
ax.legend(loc='lower left')
ax.legend(loc='center')
ax.legend(loc='upper center')
ax.legend(loc='lower center')
ax.legend(loc='center left')
ax.legend(loc='center right')
# Precise positioning (bbox_to_anchor)
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left') # Outside plot area
ax.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=3) # Below plot
Legend Styling
ax.legend(
fontsize=12,
frameon=True, # Show frame
framealpha=0.9, # Frame transparency
fancybox=True, # Rounded corners
shadow=True, # Shadow effect
ncol=2, # Number of columns
title='Legend Title', # Legend title
title_fontsize=14, # Title font size
edgecolor='black', # Frame edge color
facecolor='white' # Frame background color
)
Custom Legend Entries
from matplotlib.lines import Line2D
# Create custom legend handles
custom_lines = [Line2D([0], [0], color='red', lw=2),
Line2D([0], [0], color='blue', lw=2, linestyle='--'),
Line2D([0], [0], marker='o', color='w', markerfacecolor='green', markersize=10)]
ax.legend(custom_lines, ['Label 1', 'Label 2', 'Label 3'])
Layout and Spacing
Constrained Layout
# Preferred method (automatic adjustment)
fig, axes = plt.subplots(2, 2, constrained_layout=True)
Tight Layout
# Alternative method
fig, axes = plt.subplots(2, 2)
plt.tight_layout(pad=1.5, h_pad=2.0, w_pad=2.0)
Manual Adjustment
# Fine-grained control
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1,
hspace=0.3, wspace=0.4)
Professional Publication Style
Example configuration for publication-quality figures:
# Publication style configuration
plt.rcParams.update({
# Figure
'figure.figsize': (8, 6),
'figure.dpi': 100,
'savefig.dpi': 300,
'savefig.bbox': 'tight',
'savefig.pad_inches': 0.1,
# Font
'font.family': 'sans-serif',
'font.sans-serif': ['Arial', 'Helvetica'],
'font.size': 11,
# Axes
'axes.labelsize': 12,
'axes.titlesize': 14,
'axes.linewidth': 1.5,
'axes.grid': False,
'axes.spines.top': False,
'axes.spines.right': False,
# Lines
'lines.linewidth': 2,
'lines.markersize': 8,
# Ticks
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'xtick.major.size': 6,
'ytick.major.size': 6,
'xtick.major.width': 1.5,
'ytick.major.width': 1.5,
'xtick.direction': 'in',
'ytick.direction': 'in',
# Legend
'legend.fontsize': 10,
'legend.frameon': True,
'legend.framealpha': 1.0,
'legend.edgecolor': 'black'
})
Dark Theme
# Dark background style
plt.style.use('dark_background')
# Or manual configuration
plt.rcParams.update({
'figure.facecolor': '#1e1e1e',
'axes.facecolor': '#1e1e1e',
'axes.edgecolor': 'white',
'axes.labelcolor': 'white',
'text.color': 'white',
'xtick.color': 'white',
'ytick.color': 'white',
'grid.color': 'gray',
'legend.facecolor': '#1e1e1e',
'legend.edgecolor': 'white'
})
Color Accessibility
Colorblind-Friendly Palettes
# Use colorblind-friendly colormaps
colorblind_friendly = ['viridis', 'plasma', 'cividis']
# Colorblind-friendly discrete colors
cb_colors = ['#0173B2', '#DE8F05', '#029E73', '#CC78BC',
'#CA9161', '#949494', '#ECE133', '#56B4E9']
# Test with simulation tools or use these validated palettes
High Contrast
# Ensure sufficient contrast
plt.rcParams['axes.edgecolor'] = 'black'
plt.rcParams['axes.linewidth'] = 2
plt.rcParams['xtick.major.width'] = 2
plt.rcParams['ytick.major.width'] = 2