ECG and Cardiac Signal Processing
Overview
Process electrocardiogram (ECG) and photoplethysmography (PPG) signals for cardiovascular analysis. This module provides comprehensive tools for R-peak detection, waveform delineation, quality assessment, and heart rate analysis.
Main Processing Pipeline
ecg_process()
Complete automated ECG processing pipeline that orchestrates multiple steps.
signals, info = nk.ecg_process(ecg_signal, sampling_rate=1000, method='neurokit')
Pipeline steps: 1. Signal cleaning (noise removal) 2. R-peak detection 3. Heart rate calculation 4. Quality assessment 5. QRS delineation (P, Q, S, T waves) 6. Cardiac phase determination
Returns:
- signals: DataFrame with cleaned ECG, peaks, rate, quality, cardiac phases
- info: Dictionary with R-peak locations and processing parameters
Common methods:
- 'neurokit' (default): Comprehensive NeuroKit2 pipeline
- 'biosppy': BioSPPy-based processing
- 'pantompkins1985': Pan-Tompkins algorithm
- 'hamilton2002', 'elgendi2010', 'engzeemod2012': Alternative methods
Preprocessing Functions
ecg_clean()
Remove noise from raw ECG signals using method-specific filtering.
cleaned_ecg = nk.ecg_clean(ecg_signal, sampling_rate=1000, method='neurokit')
Methods:
- 'neurokit': High-pass Butterworth filter (0.5 Hz) + powerline filtering
- 'biosppy': FIR filtering between 0.67-45 Hz
- 'pantompkins1985': Band-pass 5-15 Hz + derivative-based
- 'hamilton2002': Band-pass 8-16 Hz
- 'elgendi2010': Band-pass 8-20 Hz
- 'engzeemod2012': FIR band-pass 0.5-40 Hz
Key parameters:
- powerline: Remove 50 or 60 Hz powerline noise (default: 50)
ecg_peaks()
Detect R-peaks in ECG signals with optional artifact correction.
peaks_dict, info = nk.ecg_peaks(cleaned_ecg, sampling_rate=1000, method='neurokit', correct_artifacts=False)
Available methods (13+ algorithms):
- 'neurokit': Hybrid approach optimized for reliability
- 'pantompkins1985': Classic Pan-Tompkins algorithm
- 'hamilton2002': Hamilton's adaptive threshold
- 'christov2004': Christov's adaptive method
- 'gamboa2008': Gamboa's approach
- 'elgendi2010': Elgendi's two moving averages
- 'engzeemod2012': Modified Engelse-Zeelenberg
- 'kalidas2017': XQRS-based
- 'martinez2004', 'rodrigues2021', 'koka2022', 'promac': Advanced methods
Artifact correction:
Set correct_artifacts=True to apply Lipponen & Tarvainen (2019) correction:
- Detects ectopic beats, long/short intervals, missed beats
- Uses threshold-based detection with configurable parameters
Returns:
- Dictionary with 'ECG_R_Peaks' key containing peak indices
ecg_delineate()
Identify P, Q, S, T waves and their onsets/offsets.
waves, waves_peak = nk.ecg_delineate(cleaned_ecg, rpeaks, sampling_rate=1000, method='dwt')
Methods:
- 'dwt' (default): Discrete wavelet transform-based detection
- 'peak': Simple peak detection around R-peaks
- 'cwt': Continuous wavelet transform (Martinez et al., 2004)
Detected components:
- P waves: ECG_P_Peaks, ECG_P_Onsets, ECG_P_Offsets
- Q waves: ECG_Q_Peaks
- S waves: ECG_S_Peaks
- T waves: ECG_T_Peaks, ECG_T_Onsets, ECG_T_Offsets
- QRS complex: onsets and offsets
Returns:
- waves: Dictionary with all wave indices
- waves_peak: Dictionary with peak amplitudes
ecg_quality()
Assess ECG signal integrity and quality.
quality = nk.ecg_quality(ecg_signal, rpeaks=None, sampling_rate=1000, method='averageQRS')
Methods:
- 'averageQRS' (default): Template matching correlation (Zhao & Zhang, 2018)
- Returns quality scores 0-1 for each heartbeat
- Threshold: >0.6 = good quality
- 'zhao2018': Multi-index approach using kurtosis, power spectrum distribution
Use cases: - Identify low-quality signal segments - Filter out noisy heartbeats before analysis - Validate R-peak detection accuracy
Analysis Functions
ecg_analyze()
High-level analysis that automatically selects event-related or interval-related mode.
analysis = nk.ecg_analyze(signals, sampling_rate=1000, method='auto')
Mode selection: - Duration < 10 seconds → event-related analysis - Duration ≥ 10 seconds → interval-related analysis
Returns: DataFrame with cardiac metrics appropriate for the analysis mode.
ecg_eventrelated()
Analyze stimulus-locked ECG epochs for event-related responses.
results = nk.ecg_eventrelated(epochs)
Computed metrics:
- ECG_Rate_Baseline: Mean heart rate before stimulus
- ECG_Rate_Min/Max: Minimum/maximum heart rate during epoch
- ECG_Phase_Atrial/Ventricular: Cardiac phase at stimulus onset
- Rate dynamics across epoch time windows
Use case: Experimental paradigms with discrete trials (e.g., stimulus presentations, task events).
ecg_intervalrelated()
Analyze continuous ECG recordings for resting state or extended periods.
results = nk.ecg_intervalrelated(signals, sampling_rate=1000)
Computed metrics:
- ECG_Rate_Mean: Average heart rate over interval
- Comprehensive HRV metrics (delegates to hrv() function)
- Time domain: SDNN, RMSSD, pNN50, etc.
- Frequency domain: LF, HF, LF/HF ratio
- Nonlinear: Poincaré, entropy, fractal measures
Minimum duration: - Basic rate: Any duration - HRV frequency metrics: ≥60 seconds recommended, 1-5 minutes optimal
Utility Functions
ecg_rate()
Compute instantaneous heart rate from R-peak intervals.
heart_rate = nk.ecg_rate(peaks, sampling_rate=1000, desired_length=None)
Method:
- Calculates inter-beat intervals (IBIs) between consecutive R-peaks
- Converts to beats per minute (BPM): 60 / IBI
- Interpolates to match signal length if desired_length specified
Returns: - Array of instantaneous heart rate values
ecg_phase()
Determine atrial and ventricular systole/diastole phases.
cardiac_phase = nk.ecg_phase(ecg_cleaned, rpeaks, delineate_info)
Phases computed:
- ECG_Phase_Atrial: Atrial systole (1) vs. diastole (0)
- ECG_Phase_Ventricular: Ventricular systole (1) vs. diastole (0)
- ECG_Phase_Completion_Atrial/Ventricular: Percentage of phase completion (0-1)
Use case: - Cardiac-locked stimulus presentation - Psychophysiology experiments timing events to cardiac cycle
ecg_segment()
Extract individual heartbeats for morphological analysis.
heartbeats = nk.ecg_segment(ecg_cleaned, rpeaks, sampling_rate=1000)
Returns: - Dictionary of epochs, each containing one heartbeat - Centered on R-peak with configurable pre/post windows - Useful for beat-to-beat morphology comparison
ecg_invert()
Detect and correct inverted ECG signals automatically.
corrected_ecg, is_inverted = nk.ecg_invert(ecg_signal, sampling_rate=1000)
Method: - Analyzes QRS complex polarity - Flips signal if predominantly negative - Returns corrected signal and inversion status
ecg_rsp()
Extract ECG-derived respiration (EDR) as respiratory proxy signal.
edr_signal = nk.ecg_rsp(ecg_cleaned, sampling_rate=1000, method='vangent2019')
Methods:
- 'vangent2019': Bandpass filtering 0.1-0.4 Hz
- 'charlton2016': Bandpass 0.15-0.4 Hz
- 'soni2019': Bandpass 0.08-0.5 Hz
Use case: - Estimate respiration when direct respiratory signal unavailable - Multi-modal physiological analysis
Simulation and Visualization
ecg_simulate()
Generate synthetic ECG signals for testing and validation.
synthetic_ecg = nk.ecg_simulate(duration=10, sampling_rate=1000, heart_rate=70, method='ecgsyn', noise=0.01)
Methods:
- 'ecgsyn': Realistic dynamical model (McSharry et al., 2003)
- Simulates P-QRS-T complex morphology
- Physiologically plausible waveforms
- 'simple': Faster wavelet-based approximation
- Gaussian-like QRS complexes
- Less realistic but computationally efficient
Key parameters:
- heart_rate: Average BPM (default: 70)
- heart_rate_std: Heart rate variability magnitude (default: 1)
- noise: Gaussian noise level (default: 0.01)
- random_state: Seed for reproducibility
ecg_plot()
Visualize processed ECG with detected R-peaks and signal quality.
nk.ecg_plot(signals, info)
Displays: - Raw and cleaned ECG signals - Detected R-peaks overlaid - Heart rate trace - Signal quality indicators
ECG-Specific Considerations
Sampling Rate Recommendations
- Minimum: 250 Hz for basic R-peak detection
- Recommended: 500-1000 Hz for waveform delineation
- High-resolution: 2000+ Hz for detailed morphology analysis
Signal Duration Requirements
- R-peak detection: Any duration (≥2 beats minimum)
- Basic heart rate: ≥10 seconds
- HRV time domain: ≥60 seconds
- HRV frequency domain: 1-5 minutes (optimal)
- Ultra-low frequency HRV: ≥24 hours
Common Issues and Solutions
Poor R-peak detection:
- Try different methods: method='pantompkins1985' often robust
- Ensure adequate sampling rate (≥250 Hz)
- Check for inverted ECG: use ecg_invert()
- Apply artifact correction: correct_artifacts=True
Noisy signal: - Use appropriate cleaning method for noise type - Adjust powerline frequency if outside US/Europe - Consider signal quality assessment before analysis
Missing waveform components:
- Increase sampling rate (≥500 Hz for delineation)
- Try different delineation methods ('dwt', 'peak', 'cwt')
- Verify signal quality with ecg_quality()
Integration with Other Signals
ECG + RSP: Respiratory Sinus Arrhythmia
# Process both signals
ecg_signals, ecg_info = nk.ecg_process(ecg, sampling_rate=1000)
rsp_signals, rsp_info = nk.rsp_process(rsp, sampling_rate=1000)
# Compute RSA
rsa = nk.hrv_rsa(ecg_info['ECG_R_Peaks'], rsp_signals['RSP_Clean'], sampling_rate=1000)
Multi-modal Integration
# Process multiple signals at once
bio_signals, bio_info = nk.bio_process(
ecg=ecg_signal,
rsp=rsp_signal,
eda=eda_signal,
sampling_rate=1000
)
References
- Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE transactions on biomedical engineering, 32(3), 230-236.
- Hamilton, P. (2002). Open source ECG analysis. Computers in cardiology, 101-104.
- Martinez, J. P., Almeida, R., Olmos, S., Rocha, A. P., & Laguna, P. (2004). A wavelet-based ECG delineator: evaluation on standard databases. IEEE Transactions on biomedical engineering, 51(4), 570-581.
- Lipponen, J. A., & Tarvainen, M. P. (2019). A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of medical engineering & technology, 43(3), 173-181.