Polars Data Transformations
Comprehensive guide to joins, concatenation, and reshaping operations in Polars.
Joins
Joins combine data from multiple DataFrames based on common columns.
Basic Join Types
Inner Join (intersection):
# Keep only matching rows from both DataFrames
result = df1.join(df2, on="id", how="inner")
Left Join (all left + matches from right):
# Keep all rows from left, add matching rows from right
result = df1.join(df2, on="id", how="left")
Outer Join (union):
# Keep all rows from both DataFrames
result = df1.join(df2, on="id", how="outer")
Cross Join (Cartesian product):
# Every row from left with every row from right
result = df1.join(df2, how="cross")
Semi Join (filtered left):
# Keep only left rows that have a match in right
result = df1.join(df2, on="id", how="semi")
Anti Join (non-matching left):
# Keep only left rows that DON'T have a match in right
result = df1.join(df2, on="id", how="anti")
Join Syntax Variations
Single column join:
df1.join(df2, on="id")
Multiple columns join:
df1.join(df2, on=["id", "date"])
Different column names:
df1.join(df2, left_on="user_id", right_on="id")
Multiple different columns:
df1.join(
df2,
left_on=["user_id", "date"],
right_on=["id", "timestamp"]
)
Suffix Handling
When both DataFrames have columns with the same name (other than join keys):
# Add suffixes to distinguish columns
result = df1.join(df2, on="id", suffix="_right")
# Results in: value, value_right (if both had "value" column)
Join Examples
Example 1: Customer Orders
customers = pl.DataFrame({
"customer_id": [1, 2, 3, 4],
"name": ["Alice", "Bob", "Charlie", "David"]
})
orders = pl.DataFrame({
"order_id": [101, 102, 103],
"customer_id": [1, 2, 1],
"amount": [100, 200, 150]
})
# Inner join - only customers with orders
result = customers.join(orders, on="customer_id", how="inner")
# Left join - all customers, even without orders
result = customers.join(orders, on="customer_id", how="left")
Example 2: Time-series data
prices = pl.DataFrame({
"date": ["2023-01-01", "2023-01-02", "2023-01-03"],
"stock": ["AAPL", "AAPL", "AAPL"],
"price": [150, 152, 151]
})
volumes = pl.DataFrame({
"date": ["2023-01-01", "2023-01-02"],
"stock": ["AAPL", "AAPL"],
"volume": [1000000, 1100000]
})
result = prices.join(
volumes,
on=["date", "stock"],
how="left"
)
Asof Joins (Nearest Match)
For time-series data, join to nearest timestamp:
# Join to nearest earlier timestamp
quotes = pl.DataFrame({
"timestamp": [1, 2, 3, 4, 5],
"stock": ["A", "A", "A", "A", "A"],
"quote": [100, 101, 102, 103, 104]
})
trades = pl.DataFrame({
"timestamp": [1.5, 3.5, 4.2],
"stock": ["A", "A", "A"],
"trade": [50, 75, 100]
})
result = trades.join_asof(
quotes,
on="timestamp",
by="stock",
strategy="backward" # or "forward", "nearest"
)
Concatenation
Concatenation stacks DataFrames together.
Vertical Concatenation (Stack Rows)
df1 = pl.DataFrame({"a": [1, 2], "b": [3, 4]})
df2 = pl.DataFrame({"a": [5, 6], "b": [7, 8]})
# Stack rows
result = pl.concat([df1, df2], how="vertical")
# Result: 4 rows, same columns
Handling mismatched schemas:
df1 = pl.DataFrame({"a": [1, 2], "b": [3, 4]})
df2 = pl.DataFrame({"a": [5, 6], "c": [7, 8]})
# Diagonal concat - fills missing columns with nulls
result = pl.concat([df1, df2], how="diagonal")
# Result: columns a, b, c (with nulls where not present)
Horizontal Concatenation (Stack Columns)
df1 = pl.DataFrame({"a": [1, 2, 3]})
df2 = pl.DataFrame({"b": [4, 5, 6]})
# Stack columns
result = pl.concat([df1, df2], how="horizontal")
# Result: 3 rows, columns a and b
Note: Horizontal concat requires same number of rows.
Concatenation Options
# Rechunk after concatenation (better performance for subsequent operations)
result = pl.concat([df1, df2], rechunk=True)
# Parallel execution
result = pl.concat([df1, df2], parallel=True)
Use Cases
Combining data from multiple sources:
# Read multiple files and concatenate
files = ["data_2023.csv", "data_2024.csv", "data_2025.csv"]
dfs = [pl.read_csv(f) for f in files]
combined = pl.concat(dfs, how="vertical")
Adding computed columns:
base = pl.DataFrame({"value": [1, 2, 3]})
computed = pl.DataFrame({"doubled": [2, 4, 6]})
result = pl.concat([base, computed], how="horizontal")
Pivoting (Wide Format)
Convert unique values from one column into multiple columns.
Basic Pivot
df = pl.DataFrame({
"date": ["2023-01", "2023-01", "2023-02", "2023-02"],
"product": ["A", "B", "A", "B"],
"sales": [100, 150, 120, 160]
})
# Pivot: products become columns
pivoted = df.pivot(
values="sales",
index="date",
columns="product"
)
# Result:
# date | A | B
# 2023-01 | 100 | 150
# 2023-02 | 120 | 160
Pivot with Aggregation
When there are duplicate combinations, aggregate:
df = pl.DataFrame({
"date": ["2023-01", "2023-01", "2023-01"],
"product": ["A", "A", "B"],
"sales": [100, 110, 150]
})
# Aggregate duplicates
pivoted = df.pivot(
values="sales",
index="date",
columns="product",
aggregate_function="sum" # or "mean", "max", "min", etc.
)
Multiple Index Columns
df = pl.DataFrame({
"region": ["North", "North", "South", "South"],
"date": ["2023-01", "2023-01", "2023-01", "2023-01"],
"product": ["A", "B", "A", "B"],
"sales": [100, 150, 120, 160]
})
pivoted = df.pivot(
values="sales",
index=["region", "date"],
columns="product"
)
Unpivoting/Melting (Long Format)
Convert multiple columns into rows (opposite of pivot).
Basic Unpivot
df = pl.DataFrame({
"date": ["2023-01", "2023-02"],
"product_A": [100, 120],
"product_B": [150, 160]
})
# Unpivot: convert columns to rows
unpivoted = df.unpivot(
index="date",
on=["product_A", "product_B"]
)
# Result:
# date | variable | value
# 2023-01 | product_A | 100
# 2023-01 | product_B | 150
# 2023-02 | product_A | 120
# 2023-02 | product_B | 160
Custom Column Names
unpivoted = df.unpivot(
index="date",
on=["product_A", "product_B"],
variable_name="product",
value_name="sales"
)
Unpivot by Pattern
# Unpivot all columns matching pattern
df = pl.DataFrame({
"id": [1, 2],
"sales_Q1": [100, 200],
"sales_Q2": [150, 250],
"sales_Q3": [120, 220],
"revenue_Q1": [1000, 2000]
})
# Unpivot all sales columns
unpivoted = df.unpivot(
index="id",
on=pl.col("^sales_.*$")
)
Exploding (Unnesting Lists)
Convert list columns into multiple rows.
Basic Explode
df = pl.DataFrame({
"id": [1, 2],
"values": [[1, 2, 3], [4, 5]]
})
# Explode list into rows
exploded = df.explode("values")
# Result:
# id | values
# 1 | 1
# 1 | 2
# 1 | 3
# 2 | 4
# 2 | 5
Multiple Column Explode
df = pl.DataFrame({
"id": [1, 2],
"letters": [["a", "b"], ["c", "d"]],
"numbers": [[1, 2], [3, 4]]
})
# Explode multiple columns (must be same length)
exploded = df.explode("letters", "numbers")
Transposing
Swap rows and columns:
df = pl.DataFrame({
"metric": ["sales", "costs", "profit"],
"Q1": [100, 60, 40],
"Q2": [150, 80, 70]
})
# Transpose
transposed = df.transpose(
include_header=True,
header_name="quarter",
column_names="metric"
)
# Result: quarters as rows, metrics as columns
Reshaping Patterns
Pattern 1: Wide to Long to Wide
# Start wide
wide = pl.DataFrame({
"id": [1, 2],
"A": [10, 20],
"B": [30, 40]
})
# To long
long = wide.unpivot(index="id", on=["A", "B"])
# Back to wide (maybe with transformations)
wide_again = long.pivot(values="value", index="id", columns="variable")
Pattern 2: Nested to Flat
# Nested data
df = pl.DataFrame({
"user": [1, 2],
"purchases": [
[{"item": "A", "qty": 2}, {"item": "B", "qty": 1}],
[{"item": "C", "qty": 3}]
]
})
# Explode and unnest
flat = (
df.explode("purchases")
.unnest("purchases")
)
Pattern 3: Aggregation to Pivot
# Raw data
sales = pl.DataFrame({
"date": ["2023-01", "2023-01", "2023-02"],
"product": ["A", "B", "A"],
"sales": [100, 150, 120]
})
# Aggregate then pivot
result = (
sales
.group_by("date", "product")
.agg(pl.col("sales").sum())
.pivot(values="sales", index="date", columns="product")
)
Advanced Transformations
Conditional Reshaping
# Pivot only certain values
df.filter(pl.col("year") >= 2020).pivot(...)
# Unpivot with filtering
df.unpivot(index="id", on=pl.col("^sales.*$"))
Multi-level Transformations
# Complex reshaping pipeline
result = (
df
.unpivot(index="id", on=pl.col("^Q[0-9]_.*$"))
.with_columns(
quarter=pl.col("variable").str.extract(r"Q([0-9])", 1),
metric=pl.col("variable").str.extract(r"Q[0-9]_(.*)", 1)
)
.drop("variable")
.pivot(values="value", index=["id", "quarter"], columns="metric")
)
Performance Considerations
Join Performance
# 1. Join on indexed/sorted columns when possible
df1_sorted = df1.sort("id")
df2_sorted = df2.sort("id")
result = df1_sorted.join(df2_sorted, on="id")
# 2. Use appropriate join type
# semi/anti are faster than inner+filter
matches = df1.join(df2, on="id", how="semi") # Better than filtering after inner join
# 3. Filter before joining
df1_filtered = df1.filter(pl.col("active"))
result = df1_filtered.join(df2, on="id") # Smaller join
Concatenation Performance
# 1. Rechunk after concatenation
result = pl.concat(dfs, rechunk=True)
# 2. Use lazy mode for large concatenations
lf1 = pl.scan_parquet("file1.parquet")
lf2 = pl.scan_parquet("file2.parquet")
result = pl.concat([lf1, lf2]).collect()
Pivot Performance
# 1. Filter before pivoting
pivoted = df.filter(pl.col("year") == 2023).pivot(...)
# 2. Specify aggregate function explicitly
pivoted = df.pivot(..., aggregate_function="first") # Faster than "sum" if only one value
Common Use Cases
Time Series Alignment
# Align two time series with different timestamps
ts1.join_asof(ts2, on="timestamp", strategy="backward")
Feature Engineering
# Create lag features
df.with_columns(
pl.col("value").shift(1).over("user_id").alias("prev_value"),
pl.col("value").shift(2).over("user_id").alias("prev_prev_value")
)
Data Denormalization
# Combine normalized tables
orders.join(customers, on="customer_id").join(products, on="product_id")
Report Generation
# Pivot for reporting
sales.pivot(values="amount", index="month", columns="product")